Towards a Semantic Classifier Committee based on Rocchio
نویسندگان
چکیده
This paper concerns supervised classification of text. Rocchio, the method we choose for its efficiency and extensibility, is tested on three reference corpora "20NewsGroups", "OHSUMED" and "Reuters", using several similarity measures. Analyzing statistical results, many limitations are identified and discussed. In order to overcome these limitations, this paper presents two main solutions: first constituting Rocchio-based classifier committees, and then using semantic resources (ontologies) in order to take meaning into consideration during text classification. These two approaches can be combined in a Rocchio-based semantic classifier committee.
منابع مشابه
ارتقای کیفیت دستهبندی متون با استفاده از کمیته دستهبند دو سطحی
Nowadays, the automated text classification has witnessed special importance due to the increasing availability of documents in digital form and ensuing need to organize them. Although this problem is in the Information Retrieval (IR) field, the dominant approach is based on machine learning techniques. Approaches based on classifier committees have shown a better performance than the others. I...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملAn kNN Model-Based Approach and Its Application in Text Categorization
An investigation has been conducted on two well known similarity-based learning approaches to text categorization. This includes the k-nearest neighbor (kNN) classifier and the Rocchio classifier. After identifying the weakness and strength of each technique, we propose a new classifier called the kNN model-based classifier by unifying the strengths of k-NN and Rocchio classifier and adapting t...
متن کاملRough set based hybrid algorithm for text classification
Automatic classification of text documents, one of essential techniques for Web mining, has always been a hot topic due to the explosive growth of digital documents available on-line. In text classification community, k-nearest neighbor (kNN) is a simple and yet effective classifier. However, as being a lazy learning method without premodelling, kNN has a high cost to classify new documents whe...
متن کاملUsing kNN Model-based Approach for Automatic Text Categorization
An investigation has been conducted on two well known similarity-based learning approaches to text categorization: the k-nearest neighbor (k-NN) classifier and the Rocchio classifier. After identifying the weakness and strength of each technique, a new classifier called the kNN model-based classifier (kNNModel) has been proposed. It combines the strength of both k-NN and Rocchio. A text categor...
متن کامل